
Front end performance
Andy Callaghan

recollate.com

Making a website performant: Part I

Overview

Part I Part II

Front end performance

Common problems & fixes

Why bother?

Server side performance

Perceived performance

Planning to actually fix them

We want pages to
start fast, and stay fast

What is performance?

“Load is not a single moment in time -
it’s an experience that no

one metric can fully capture.”
rc8.io/paint-timing

Key website measurements

Backend Frontend Perception

TTF Byte TTF Paint First Input Delay

Page weight TTF Content Framerate

Network speed TTF Interactive Animation

Some things I've found

'Load time' isn't useful

Measuring performance objectively is useful

Keeping focus on the user is hard

Getting your PM to give you time
to actually do the fixes is like really hard

Let's load a slow web page

rc8.io/reddit-load

https://docs.google.com/file/d/1sOCvRfKy1KExEmCzXkmJp0aPLiBlLMmn/preview

Frontend performance

TT First Paint

2.6s 2.7s

TTFP is 2.7s

First signs of life

but...
No standard definition

TT First Content

3.8s

TTFC is 3.8s

First ‘real content’
Different for every website

Easier to measure

First Paint/Render Common Issues
Page size, large DOM

Long critical rendering path

Complex CSSOM

Monolithic or render-blocking JS

TTFB (part II)

Universal CSS selectors
/* Selects all elements */

* {
 color: green;
}

Complicates CSSOM, longer to parse

rc8.io/universal-selector

First Paint/Content Common Fixes

Finding your critical path, make it short

Reduce idle time in the thread

Progressive content rendering

Inline render blocking CSS, prioritise delivery

Async/defer non-critical JS

rc8.io/rendering-path

Webpack specific tuning

mode 'production', uglify JS

Cache-Control: max-age=31536000

Code splitting, only load the JS that's needed

Separate large sections - i.e. homepage, search

In ES6+ only import the functions you need

webpack-bundle-analyser

rc8.io/webpack-analyser

For example, moment.js
Loads all locales by default

400KB -> 100KB when they're removed

new webpack.ContextReplacementPlugin(/moment[\/\\]locale$/, /en/)

rc8.io/moment-js

...but be careful

"Styles at top, scripts at bottom" useless on large sites

Don't reflow existing content once painted

Question why you need to lazy load

Above all: keep the user experience consistent

TT First Interactive

8.5s 8.6s

TTFI is 8.6s

Useful content
No 'jank' from now

Event handlers on most visible elements

rc8.io/ttfi-definition

Tracking TTFC in ES6
const observer = new PerformanceObserver((list) => {

 for (const entry of list.getEntries()) {

 console.log(entry.name) // => "first-paint"

 }

});

observer.observe({entryTypes: ['paint']}

First Interactive Common Issues

Third party JS

Web fonts

'Jankiness'

Long running JS

Large, unoptimised, non-visible images

Lazy loaded images
1600KB to 100KB

94% reduction

Javascript is the most
expensive part of your site

rc8.io/poo-on-thread

Idle until urgent
Eager evaluation: slow start time, quick execution

Lazy evaluation: quick start time, slow execution

‘Idle until urgent’: Lazy, unless asked for before ready

Then, load it using a requestIdleCallback

rc8.io/state-of-js
rc8.io/request-idle-callback
rc8.io/idle-until-urgent

Third party JS can
get out of hand

rc8.io/reddit-map

Reddit post

CNN.com

Why bother?

Pinterest legacy site

TTFP 4.2s
TTFI 23s

Pinterest new PWA site

TTFP 1.8s
TTFI 5.6s

Time spent: +40%
Ad revenue: +44%

'Engagements': +60%

rc8.io/perf-stats

End of Part I

Perceived performance
Andy Callaghan

recollate.com

Making a website performant: Part II

Overview

Part I Part II

Front end performance

Common problems & fixes

Why bother?

Server side performance

Perceived performance

Planning to actually fix them

Overview

Part I Part II

Front end performance

Common problems & fixes

Why bother?

Server side performance

Perceived performance

Coffee and chat

Backend performance

TT First Byte

Chrome developer tools

Chrome developer tools

TTFB is 468ms

Server responsiveness

Page weight &
connection speed

Chrome developer tools

HTML downloaded
in 355ms

Varies across devices,
networks, and pages

Fixing server
performance issues

TTFB common issues

Physical distance between user & edge router

Server-side computation

Bad/restrictive infrastructure

Slow/shared hosting

Radio communication (e.g. crappy cellular 2/3G)

TTFB common fixes

Better and/or less dynamic code on a request

SQL EXPLAIN, good indexes, master/clones

More app servers, load balancing, app level caching

DNS preload, HTTP2, TLS 1.3, Service Workers

CDN delivery, ‘better’ hosting, dedicated CPU/memory

JAM stack
Templated views, compiled markup at build time

JS on the client-side for anything dynamic

APIs for integrations, authentication, search etc

Automated & atomic deploys, easy to rollback & scale

Fastest TTFB on the web

rc8.io/jam-stack

Service workers
A small script, running between client & server

Programmable proxy, control over network requests

Handles goodies like offline, push, caching strategy

No access to DOM, only postMessage

Using a service worker

Perceived performance

First Input Delay

“from when a user first interacts
with your site, to the time when
the browser is actually able to
respond to that interaction.”

rc8.io/input-delay

TTI

TTFC

FID

‘Real life’ user experience whilst loading

Needs client-side code to report

Scroll, click, 'main interaction' separately measured

rc8.io/median-fid

First Input Delay

"metrics such as onLoad and
TTFB fail to represent majority

human perception"

rc8.io/perception-paper

User perception of "page is complete"

Actual performance

Expected performance

User experience

Expected performance

Web game E-commerce

High FPS Changing framerate

10ms delay
 is intolerable

100ms delay
is probably okay

Nausea $$$$

Context matters for perception

Perception matters

Ilya Grigorik, Google : rc8.io/delay-perception

0 - 100ms Instantaneous

100 - 300ms Small, but perceptible

300ms - 1s "this machine is working"

1 - 2s Interruption to thoughtflow, context-switching

2+ seconds Annoyance, rage clicking, loss of confidence

10+ seconds "I'll go and do something else"

Finish first paint
within one second

Animation in CSS
CSS property changes can change the whole page

opacity, transform can be hardware accelerated

Avoid animating on other properties such as:
border, padding, width, position, ...

Browsers try to guess compositing optimisations

rc8.io/css-triggers

CSS will-change
Give browser hints, but use very sparingly (if at all)

.fading-thing {

 will-change: opacity;

 transform: opacity(1); // For IE/Edge

}

.fading-thing:hover{ opacity(0.5) }

User experience

Mobile ≠ a device

‘Mobile’ describes your user

People that are ‘mobile’ have
different expectations

People that are walking,
anxious, young or rushed

perceive your site as slower

rc8.io/perception-paper

Mobile users want a native UI
Inertia scrolling

Touch 'press' document.addEventListener("touchstart", ...)

Pre-emptive/optimistic UI changes

Status bar loading indicator

Loading pinwheels, then full site

rc8.io/mobile-perception

Who to follow
Lara Hogan (author/Etsy) designingforperformance.com

Tobias Ahlin (Minecraft/Github/Spotify) tobiasahlin.com

Philip Walton (Google) philipwalton.com

Brad Frost bradfrost.com

Cloudflare's Webinars cloudflare.com/webinars

recollate.com

